(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 3987

	-		_	 		
Roll No.	*					

B.Tech.

(SEMESTER-IV) THEORY EXAMINATION, 2011-12 MATHEMATICS — III

Time: 3 Hours |

[Total Marks: 100

Note: Attempt questions from each Section as indicated. The symbols have their usual meaning. Provide statistical tables which are required by students.

Section - A

Attempt all parts of this question. Each part carries 2 marks:

 $10 \times 2 = 20$

- 1, (a) If f(z) = u + iv is analytic, then show that the family of curves $u(x, y) = c_1$ and $v(x, y) = c_2$ are mutually orthogonal.
 - (b) Define removable and essential singular points with example.
 - (c) Define the coefficients of Skewness and Kurtosis.
 - (d) What is the total probability theorem?
 - (e) Explain in brief Null and Alternative hypotheses.
 - (f) Define coefficient of contingency.
 - (g) Isolate the roots of the equation $x^3 4x + 1 = 0$.
 - (h) Verify that $\nabla E \equiv \Delta$.
 - (i) What do you mean by numerical differentiation? Explain in brief.
 - (j) Let $I = \int_{x_0}^{x_3} f(x)dx$, where f(x) is a third degree polynomial. Write the formula you

will like to use to find the approximate value of I. It is given that the data are equispaced.

Section - B

2. Attempt any three parts of this question.

 $3 \times 10 = 30$

- (a) Verify Cauchy's theorem by integrating exp (iz) along the boundary of the triangle with vertices at the points 1 + i, -1 + i and -1 i.
- (b) Find all four central moments and dicuss skewness and kurtosis and also Karl Pearson skewness for the frequency distribution given in the following table:

Range of expenditure (in ₹ 100 per month)	2-4	4-6	6 – 8	8 – 10	10 – 12
No. of families	38	292	389	212	69

- (c) A manufacturer claimed that at least 95% of the equipments which he supplied to a factory conformed to the specifications. An examination of a sample of 200 pieces of equipments revealed that 18 were faulty. Test this claim at a significant level of (i) 0.05 and (ii) 0.01.
- (d) Show that the Newton-Raphson Method has second order convergence.
- (e) Solve the following system using Crout's decomposition method:

$$3x - y + 2z = 12$$

$$x + 2y + 3z = 11$$

$$2x - 2y - z = 2$$

Section - C

All questions of this section are compulsory. Attempt any two parts from each question. $5 \times 10 = 50$

3. (a) Determine p such that the function

$$f(z) = \frac{1}{2} \log (x^2 + y^2) + i \tan^{-1} \left(\frac{px}{y}\right)$$
 is an analytic function. Also find f'(z).

(b) Find Laurent series expansion of

$$f(z) = \frac{4z - 1}{z^4 - 1}$$

about the point z = 0.

(c) Evaluate $\int_{0}^{2\pi} \frac{\cos 2\theta}{5 + 4 \cos \theta} d\theta.$

4. (a) Fit a parabola of the form $y = a + bx + cx^2$ to the data

x	1	2	3	4	
y	1.7	1.8	2.3	3.2	

by the method of least squares.

(b) If θ is the acute angle between the two regression lines in case of two variables x and y, show that

$$\tan \theta = \frac{1 - r^2}{r} \cdot \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2},$$

where r, σ_x , σ_y have their usual meanings. Explain the significance of the formula when r=0 and $r=\pm 1$.

(c) Out of 800 families with 5 children each, how many would you expect to have (a) 3 boys (b) 5 girls (c) either 2 or 3 boys? Assume equal probabilities for boys and girls.

5. (a) Fit a binomial distribution to the data given in the following table:

x	0	1	2	3	4
f	24	41	28	5	2

(b) The number of scooter accidents per month during a year in a certain town were as follows:

Are these frequencies in agreement with the belief that the accident conditions were the same during the whole year?

(c) \overline{X} and R values for 10 sub-groups of 5 readings are given in the following table. Determine the control limits for \overline{X} and R charts for future use, eliminating all the out of control points:

Sub-group numbers	1	2	3	4	5	6	7
$\overline{\mathbf{x}}$	34.0	31.6	30.8	33.0	35.0	32.2	33.0
R	4	4	. 2	3	5	2	5

Sub-group numbers	8	9	10
$\overline{\mathbf{x}}$	32.6	33.8	37.8
R	13	19	6

- 6. (a) Find the root of $2 \sin x 2x + 1 = 0$ correct to five significant digits with initial approximation $x_0 = 1.0$.
 - (b) Estimate the values of a and b in the following table:

X	10	15	20 '	25	30	35
f(x)	43	a	29	32	b	77

(c) The population of a town in decennial census is as under. Estimate the population for the year 1955:

Year	1921	1931	1941	1951	1961
Population (in lac)	46	66	81	93	101

7. (a) Find $\frac{d}{dx}(J_0)$ at x = 0.1 from the following table:

x	0.0	0.1	0.2	0.3	0.4
$J_0(x)$	1.0000	0.9975	0.9900	0.9776	0.9604

Also find
$$\frac{d^2}{dx^2}$$
 (J₀) at $x = 0.1$.

(b) Evaluate the integral

$$\int_{0}^{2\pi} e^{-t} \sin(10 t) dt$$

using Simpson's 3/8 rule.

(c) Apply Picard's method to find the solution of the initial value problem

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y - x, \ y(0) = 2$$

Show that the iterative solution approaches the exact solution.